资源类型

期刊论文 1564

年份

2024 3

2023 117

2022 149

2021 99

2020 111

2019 79

2018 79

2017 75

2016 69

2015 86

2014 69

2013 59

2012 62

2011 46

2010 60

2009 61

2008 61

2007 60

2006 44

2005 33

展开 ︾

关键词

数学模型 13

多目标优化 9

模型试验 9

数值模拟 8

模型 7

COVID-19 6

不确定性 4

人工智能 4

神经网络 4

遗传算法 4

GM(1 3

计算机模拟 3

1)模型 2

5G 2

DX桩 2

D区 2

SARS 2

Weibull分布 2

k-ε模型 2

展开 ︾

检索范围:

排序: 展示方式:

Application of a weakly compressible smoothed particle hydrodynamics multi-phase model to non-cohesive

Rasoul MEMARZADEH, Gholamabbas BARANI, Mahnaz GHAEINI-HESSAROEYEH

《结构与土木工程前沿(英文)》 2018年 第12卷 第3期   页码 412-424 doi: 10.1007/s11709-017-0432-8

摘要:

The subject of present study is the application of mesh free Lagrangian two-dimensional non-cohesive sediment transport model applied to a two-phase flow over an initially trapezoidal-shaped sediment embankment. The governing equations of the present model are the Navier-Stocks equations solved using Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) method. To simulate the movement of sediment particles, the model considers a powerful two-part technique; when the sediment phase has rigid behavior, only the force term due to shear stress in the Navier-Stokes equations is used for simulation of sediment particles’ movement. Otherwise, all the Navier-Stokes force terms are used for transport simulation of sediment particles. In the present model, the interactions between different phases are calculated automatically, even with considerable difference between the density and viscosity of phases. Validation of the model is performed using simulation of available laboratory experiments, and the comparison between computational results and experimental data shows that the model generally predicts well the flow propagation over movable beds, the induced sediment transport and bed changes, and temporal evolution of embankment breaching.

关键词: WCSPH method     non-cohesive sediment transport     rheological model     two-part technique     two-phase dam break    

Trajectory optimization with constraints for alpine skiers based on multi-phase nonlinear optimal control

Cong-ying Cai, Xiao-lan Yao,yaoxiaolan@bit.edu.cn

《信息与电子工程前沿(英文)》 2020年 第21卷 第10期   页码 1413-1534 doi: 10.1631/FITEE.1900586

摘要: The super giant slalom (Super-G) is a speed event in alpine skiing, in which the skier trajectory has a significant influence on the athletes’ performances. It is a challenging task to determine an for the skiers along the entire course because of the complexity and difficulty in the convergence of the optimization model. In this study, a model for alpine skiers competing in the Super-G is established based on the theory, in which the objective is to minimize the runtime between the starting point and the finish line. The original problem is converted into a multi-phase nonlinear problem solved with a , and the trajectory parameters are optimized to discover the time-. Using carried out by the MATLAB optimization toolbox, the is obtained under several equality and inequality constraints. Simulation results reveal the effectiveness and rationality of the model. A test is carried out to show that our code works properly. In addition, several practical proposals are provided to help alpine skiers improve their training and skiing performance.

Fundamental influences of particles on stirred and unstirred venting processes of foaming systems

Henrik LEIMEISTER,Jörg STEINBACH

《化学科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 141-148 doi: 10.1007/s11705-014-1423-0

摘要: Venting is the common safety measure to protect plant equipment against excessive overpressure. So far, scenarios in which particles were part of the system and should have been accounted for did ignore their presence; the scenarios were treated like a two-phase system. Current research shows that particles can have a major influence on the venting behaviour. Experimental results indicate that particles affect level swell and relief flow especially of foamy systems. Based on those results four different layers of influence of the particle have been identified and are presented in a first model. Based on this model recommendations for the development of new and more complex models are given.

关键词: venting     multi-phase    

Maximum entropy based finite element analysis of porous media

Emad NOROUZI, Hesam MOSLEMZADEH, Soheil MOHAMMADI

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 364-379 doi: 10.1007/s11709-018-0470-x

摘要: The maximum entropy theory has been used in a wide variety of physical, mathematical and engineering applications in the past few years. However, its application in numerical methods, especially in developing new shape functions, has attracted much interest in recent years. These shape functions possess the potential for performing better than the conventional basis functions in problems with randomly generated coarse meshes. In this paper, the maximum entropy theory is adopted to spatially discretize the deformation variable of the governing coupled equations of porous media. This is in line with the well-known fact that higher-order shape functions can provide more stable solutions in porous problems. Some of the benchmark problems in deformable porous media are solved with the developed approach and the results are compared with available references.

关键词: maximum entropy FEM     fully coupled multi-phase system     porous media    

Hydromechanical model for hydraulic fractures using XFEM

Bo HE

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 240-249 doi: 10.1007/s11709-018-0490-6

摘要: In this study, a hydromechanical model for fluid flow in fractured porous media is presented. We assume viscous fluids and the coupling equations are derived from the mass and momentum balance equations for saturated porous media. The fluid flow through discrete cracks will be modelled by the extended finite element method and an implicit time integration scheme. We also present a consistent linearization of the underlying non-linear discrete equations. They are solved by the Newton-Raphson iteration procedure in combination with a line search. Furthermore, the model is extended to includes crack propagation. Finally, examples are presented to demonstrate the versatility and efficiency of this two-scale hydromechanical model. The results suggest that the presence of the fracture in a deforming, porous media has great impact on the fluid flow and deformation patterns.

关键词: multi-phase medium     porous     fracture     multi-scale method    

纳米多孔介质中的流体流动

Weiyao Zhu,Bin Pan,Zhen Chen,Wengang Bu,Qipeng Ma,Kai Liu,Ming Yue

《工程(英文)》 2024年 第32卷 第1期   页码 139-152 doi: 10.1016/j.eng.2023.05.014

摘要:

Fluid flow at nanoscale is closely related to many areas in nature and technology, e.g., unconventional hydrocarbon recovery, carbon dioxide geo-storage, underground hydrocarbon storage, fuel cells, ocean desalination and biomedicine. At nanoscale, interfacial forces dominate over bulk forces, and nonlinear effects are important, which significantly deviate from conventional theory. During the past decades, a series of experiments, theory and simulations have been performed to investigate fluid flow at nanoscale, which has advanced our fundamental knowledge of this topic. However, a critical review is still lacking, which has seriously limited the basic understanding of this area. Therefore herein, we systematically review experimental, theoretical and simulation works on single- and multi- phases fluid flow at nanoscale. We also clearly point out the current research gaps and future outlook. These insights will promote the significant development of nonlinear flow physics at nanoscale and will provide crucial guidance on the relevant areas.

关键词: Transport in nanoporous media     Multi-phase fluid dynamics     Nonlinear flow mechanisms     Nonlinear flow conservation equations     Interfacial forces     Molecular dynamics simulation    

Coupled solid-fluid FE-analysis of an embankment dam

Michael PERTL, Matthias HOFMANN, Guenter HOFSTETTER

《结构与土木工程前沿(英文)》 2011年 第5卷 第1期   页码 53-62 doi: 10.1007/s11709-010-0084-4

摘要: A coupled solid-fluid FE-model for partially saturated soils, characterized by modeling the soil as a three-phase material consisting of a deformable soil skeleton and the fluid phases water and air, is reviewed briefly. As a constitutive model for the soil skeleton, the well-known Barcelona Basic model (BBM) is employed, which is formulated in terms of net stress and matric suction. For the BBM, a computationally efficient return mapping algorithm is proposed, which only requires the solution of a scalar nonlinear equation at the integration point level. The coupled FE-model is applied to the coupled transient numerical simulation of the water flow and the deformations and stresses in an embankment dam.

关键词: multi-phase model     unsaturated soil model     Barcelona Basic model (BBM)     return mapping algorithm     embankment dam    

High-order phase-field model with the local and second-order max-entropy approximants

Fatemeh AMIRI

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 406-416 doi: 10.1007/s11709-018-0475-5

摘要: We approximate the fracture surface energy functional based on phase-field method with smooth local maximum entropy (LME) and second-order maximum entropy (SME) approximants. The higher-order continuity of the meshfree methods such as LME and SME approximants allows to directly solve the fourth-order phase-field equations without splitting the fourth-order differential equation into two second-order differential equations. We will first show that the crack surface functional can be captured more accurately in the fourth-order model with smooth approximants such as LME, SME and B-spline. Furthermore, smaller length scale parameter is needed for the fourth-order model to approximate the energy functional. We also study SME approximants and drive the formulations. The proposed meshfree fourth-order phase-field formulation show more stable results for SME compared to LME meshfree methods.

关键词: second-order maximum entropy     local maximum entropy     second- and fourth-order phase-field models     B-spline    

Development of machine learning multi-city model for municipal solid waste generation prediction

《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1551-6

摘要:

● A database of municipal solid waste (MSW) generation in China was established.

关键词: Municipal solid waste     Machine learning     Multi-cities     Gradient boost regression tree    

A practical multi-lane factor model of bridges based on multi-truck presence considering lane load disparities

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 877-894 doi: 10.1007/s11709-021-0756-2

摘要: Many bridge design specifications consider multi-lane factors (MLFs) a critical component of the traffic load model. Measured multi-lane traffic data generally exhibit significant lane disparities in traffic loads over multiple lanes. However, these disparities are not considered in current specifications. To address this drawback, a multi-coefficient MLF model was developed based on an improved probabilistic statistical approach that considers the presence of multiple trucks. The proposed MLF model and approach were calibrated and demonstrated through an example site. The model sensitivity analysis demonstrated the significant influence of lane disparity of truck traffic volume and truck weight distribution on the MLF. Using the proposed approach, the experimental site study yielded MLFs comparable with those directly calculated using traffic load effects. The exclusion of overloaded trucks caused the proposed approach, existing design specifications, and conventional approach of ignoring lane load disparity to generate comparable MLFs, while the MLFs based on the proposed approach were the most comprehensive. The inclusion of overloaded trucks caused the conventional approach and design specifications to overestimate the MLFs significantly. Finally, the benefits of the research results to bridge practitioners were discussed.

关键词: bridges     multi-lane factor     traffic load     lane load disparity     multi-truck presence     weigh-in-motion data    

A multi-sensor relation model for recognizing and localizing faults of machines based on network analysis

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0736-9

摘要: Recently, advanced sensing techniques ensure a large number of multivariate sensing data for intelligent fault diagnosis of machines. Given the advantage of obtaining accurate diagnosis results, multi-sensor fusion has long been studied in the fault diagnosis field. However, existing studies suffer from two weaknesses. First, the relations of multiple sensors are either neglected or calculated only to improve the diagnostic accuracy of fault types. Second, the localization for multi-source faults is seldom investigated, although locating the anomaly variable over multivariate sensing data for certain types of faults is desirable. This article attempts to overcome the above weaknesses by proposing a global method to recognize fault types and localize fault sources with the help of multi-sensor relations (MSRs). First, an MSR model is developed to learn MSRs automatically and further obtain fault recognition results. Second, centrality measures are employed to analyze the MSR graphs learned by the MSR model, and fault sources are therefore determined. The proposed method is demonstrated by experiments on an induction motor and a centrifugal pump. Results show the proposed method’s validity in diagnosing fault types and sources.

关键词: fault recognition     fault localization     multi-sensor relations     network analysis     graph neural network    

Applying the multi-zone model in predicting the operating range of HCCI engines

Ming JIA, Maozhao XIE, Zhijun PENG,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 414-423 doi: 10.1007/s11708-010-0108-8

摘要: In this paper, a multi-zone model is developed to predict the operating range of homogeneous charge compression ignition (HCCI) engines. The boundaries of the operating range were determined by knock (presented by ringing intensity), partial burn (presented by combustion efficiency), and cycle-to-cycle variations (presented by the sensitivity of indicated mean effective pressure to initial temperature). By simulating an HCCI engine fueled with iso-octane, the knock and cycle-to-cycle variations predicted by the model showed satisfactory agreement with measurements made under different initial temperatures and equivalence ratios; the operating range was also well reproduced by the model. Furthermore, the model was applied to predict the operating range of the HCCI engine under different engine speeds by varying the intake temperatures and equivalence ratios. The potential to extend the operating range of the HCCI engine through two strategies, i.e., variable compression ratio and intake pressure boosting, was then investigated. Results indicate that the ignition point can be efficiently controlled by varying the compression ratio. A low load range can be extended by increasing the intake temperature while reducing the compression ratio. Higher intake temperatures and lower compression ratios can also extend the high load range. Boosting intake pressure is helpful in controlling the combustion of the HCCI engine, resulting in an extended high load range.

关键词: homogeneous charge compression ignition (HCCI) engine     multi-zone     operating range    

Multi-timescale optimization scheduling of interconnected data centers based on model predictive control

《能源前沿(英文)》 doi: 10.1007/s11708-023-0912-6

摘要: With the promotion of “dual carbon” strategy, data center (DC) access to high-penetration renewable energy sources (RESs) has become a trend in the industry. However, the uncertainty of RES poses challenges to the safe and stable operation of DCs and power grids. In this paper, a multi-timescale optimal scheduling model is established for interconnected data centers (IDCs) based on model predictive control (MPC), including day-ahead optimization, intraday rolling optimization, and intraday real-time correction. The day-ahead optimization stage aims at the lowest operating cost, the rolling optimization stage aims at the lowest intraday economic cost, and the real-time correction aims at the lowest power fluctuation, eliminating the impact of prediction errors through coordinated multi-timescale optimization. The simulation results show that the economic loss is reduced by 19.6%, and the power fluctuation is decreased by 15.23%.

关键词: model predictive control     interconnected data center     multi-timescale     optimized scheduling     distributed power supply     landscape uncertainty    

A multi-scale model for CO

G. X. WANG, X. R. WEI, V. RUDOLPH, C. T. WEI, Y. QIN

《化学科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 20-25 doi: 10.1007/s11705-009-0138-0

摘要: This paper presents a multi-scale model to simulate the multicomponent gas diffusion and flow in bulk coals for CO sequestration enhanced coalbed methane recovery. The model is developed based on a bi-dispersed structure model by assuming that coal consists of microporous micro-particles, meso/macro-pores and open microfractures. The bi-disperse diffusion theory and the Maxwell-Stefan approach were incorporated in the model, providing an improved simulation of the CH —CO /CH —N counter diffusion dynamics. In the model, the counter diffusion process is numerically coupled with the flow of the mixture gases occurring within macro-pores or fractures in coal so as to account for the interaction between diffusion and flow in gas transport through coals. The model was validated by both experimental data from literature and our CO flush tests, and shows an excellent agreement with the experiments. The results reveal that the gas diffusivities, in particular the micro-pore diffusivities are strongly concentration-dependent.

关键词: multi-scale model     gas transport     coal     coalbed methane     CO2 sequestration    

Cutting CO emissions through demand side regulation: Implications from multi-regional input–output linearprogramming model

《工程管理前沿(英文)》   页码 452-461 doi: 10.1007/s42524-022-0209-1

摘要: This study combines multi-regional input–output (MRIO) model with linear programming (LP) model to explore economic structure adjustment strategies for the reduction of carbon dioxide (CO2) emissions. A particular feature of this study is the identification of the optimal regulation sequence of final products in various regions to reduce CO2 emissions with the minimum loss in gross domestic product (GDP). By using China’s MRIO tables 2017 with 28 regions and 42 economic sectors, results show that reduction in final demand leads to simultaneous reductions in GDP and CO2 emissions. Nevertheless, certain demand side regulation strategy can be adopted to lower CO2 emissions at the smallest loss of economic growth. Several key final products, such as metallurgy, nonmetal, metal, and chemical products, should first be regulated to reduce CO2 emissions at the minimum loss in GDP. Most of these key products concentrate in the coastal developed regions in China. The proposed MRIOLP model considers the inter-relationship among various sectors and regions, and can aid policy makers in designing effective policy for industrial structure adjustment at the regional level to achieve the national environmental and economic targets.

关键词: CO2 emissions     demand side regulation     multi-regional input–output model     linear programming model    

标题 作者 时间 类型 操作

Application of a weakly compressible smoothed particle hydrodynamics multi-phase model to non-cohesive

Rasoul MEMARZADEH, Gholamabbas BARANI, Mahnaz GHAEINI-HESSAROEYEH

期刊论文

Trajectory optimization with constraints for alpine skiers based on multi-phase nonlinear optimal control

Cong-ying Cai, Xiao-lan Yao,yaoxiaolan@bit.edu.cn

期刊论文

Fundamental influences of particles on stirred and unstirred venting processes of foaming systems

Henrik LEIMEISTER,Jörg STEINBACH

期刊论文

Maximum entropy based finite element analysis of porous media

Emad NOROUZI, Hesam MOSLEMZADEH, Soheil MOHAMMADI

期刊论文

Hydromechanical model for hydraulic fractures using XFEM

Bo HE

期刊论文

纳米多孔介质中的流体流动

Weiyao Zhu,Bin Pan,Zhen Chen,Wengang Bu,Qipeng Ma,Kai Liu,Ming Yue

期刊论文

Coupled solid-fluid FE-analysis of an embankment dam

Michael PERTL, Matthias HOFMANN, Guenter HOFSTETTER

期刊论文

High-order phase-field model with the local and second-order max-entropy approximants

Fatemeh AMIRI

期刊论文

Development of machine learning multi-city model for municipal solid waste generation prediction

期刊论文

A practical multi-lane factor model of bridges based on multi-truck presence considering lane load disparities

期刊论文

A multi-sensor relation model for recognizing and localizing faults of machines based on network analysis

期刊论文

Applying the multi-zone model in predicting the operating range of HCCI engines

Ming JIA, Maozhao XIE, Zhijun PENG,

期刊论文

Multi-timescale optimization scheduling of interconnected data centers based on model predictive control

期刊论文

A multi-scale model for CO

G. X. WANG, X. R. WEI, V. RUDOLPH, C. T. WEI, Y. QIN

期刊论文

Cutting CO emissions through demand side regulation: Implications from multi-regional input–output linearprogramming model

期刊论文